[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15619

MCA 4th Semester Examination Operational Research (NS) MCA-403

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all selecting one question from each of the sections A, B, C and D. Section-E is compulsory. Attempt all the subparts of the question in section-E. Each question carries 12 marks.

SECTION - A

- 1. What is operation research? Discuss the uses and limitations of operation research. (12)
- 2. Solve the following linear programming problem by graphical method

Maximize Z = 3x + 4y

Subject to,
$$5x+4y \le 200$$
, $3x+5y \le 150$, $5x+4y \ge 100$, $8x+4y \ge 80$ and $x,y \ge 0$. (12)

SECTION - B

3. Solve the following linear programming problem using dual simplex method

Maximize Z = -3x-2y

Subject to,
$$x+y \ge 1$$
, $x+y \le 7$, $x+2y \ge 10$, $y \le 3$ and $x,y \ge 0$ (12)

[P.T.O.]

2 15619

 Draw the network and determine the critical path for the given data. Also calculate all the floats involved in CPM.

Activity	1-2	1-3	2-4	3-4	3-5	4-5	4-6	5-6
Time in weeks	6	5	10	3	4	6	2	9

(12)

SECTION - C

- 5. What is optimality test? Discuss the various steps involved in the stepping stone method to perform the optimality test.(12)
- Solve the following transportation problem using Vogel's method.

	Destination							
		Α	В	С	D	Е	F	Supply
	1	9	12	9	6	9	10	5
Source	2	7	3	7	7	5	5	6
	3	6	5	9	11	3	11	2
	4	6	8	11	2	2	10	9
4	Demand	4	4	6	2	4	2	,

(12)

SECTION - D

- 7. Write short note on the following:
 - (a) Selective Control Techniques.
 - (b) Factors involved in Inventory analysis. (6×2=12)

3

15619

8. Solve the following problem graphically.

	Player B			
	1	2		
	5	4		
Player A	-7	9		
	-4	-3		
	2	1		

(12)

SECTION - E

9. Answer the following:

- (i) What are surplus variables?
- (ii) What is a feasible solution?
- (iii) What is a basic solution?
- (iv) What is a merge event?
- (v) What is dangling?
- (vi) Define critical activity.
- (vii) What is non-degenerate solution in a transportation problem?
- (viii) Write the difference between a transportation problem and an assignment problem
- (ix) What is an unbalanced assignment problem?
- (x) Define shortage cost.
- (xi) Define order cycle in an inventory system.
- (xii) Define saddle point.

 $(12 \times 1 = 12)$